AI System Architecture Design: Duory Language Learning Assistant


1. Overview

Duory integrates with Duolingo to provide AI-enhanced language learning features (translation, romanization, kana support) via a cross-platform mobile app. The architecture prioritizes low-latency AI processing, secure data synchronization, and scalable subscription management.


2. High-Level Architecture

Duory Architecture Diagram
Simplified Diagram Flow:
Mobile App (React Native)API GatewayMicroservicesAI Models / Duolingo API

Database & CacheMonitoring & Auth


3. Technology Stack & Versions

Component Technology & Version Rationale
Mobile App React Native 0.72 + TypeScript 5.1 Cross-platform support, hot-reload for rapid iteration
Backend Node.js 20 (Express 4.18), Python 3.11 (FastAPI) Async I/O for AI tasks; Python for ML pipelines
AI Models Hugging Face Transformers 4.33 (MarianMT, Whisper), spaCy 3.7 Pre-trained translation/romanization; lightweight NLP
Database PostgreSQL 15 (Relational), Redis 7.2 (Cache) ACID compliance for user data; low-latency caching
Cloud & DevOps AWS ECS/Fargate, Terraform 1.5, GitHub Actions Serverless scaling; IaC for reproducibility
Security Auth0/JWT, TLS 1.3, AWS KMS OAuth2 for Duolingo; E2E encryption

4. Core Components

a) Mobile Client (React Native):

  • UI Layer: React Navigation 6.x, Redux Toolkit 1.9
  • Offline Support: WatermelonDB 0.27 (local sync with Duolingo data)
  • Subscription: RevenueCat 4.0 (unified iOS/Android billing)

b) Backend Microservices (Node.js/Python):

Service Function Tech Stack
User Management Auth, profile, subscriptions Node.js + Auth0
Duolingo Sync OAuth2-based data ingestion Python + Duolingo API v1
AI Processing Translation/romanization/kana generation FastAPI + Hugging Face
Analytics User behavior tracking (via Amazon Kinesis) AWS Lambda + Athena

c) AI Model Deployment:

  • Translation: Fine-tuned MarianMT (e.g., EN→JA/ES/FR) on AWS SageMaker.
  • Romanization/Kana: Rule-based spaCy pipelines + BERT for context-aware romanization (e.g., Japanese → Romaji).
  • Optimization: Model quantization (via ONNX Runtime) for 200ms latency on mobile.

d) Data Flow:

  1. User submits phrase via app → API Gateway (AWS API Gateway) routes to AI Processing.
  2. AI Service checks Redis cache; if miss, calls Hugging Face model → returns translated/romanized output.
  3. Duolingo Sync Service pulls learning data every 2h (cron job) → stores in PostgreSQL.

5. Security & Compliance

  • Data Encryption: AES-256 at rest (PostgreSQL), TLS 1.3 in transit.
  • Duolingo Integration: OAuth2 scopes limited to read:profile and read:progress.
  • GDPR/CCPA: Anonymized analytics; user data deletion API.
  • Rate Limiting: Redis-based throttling (100 reqs/min per user).

6. Scalability & Performance

  • AI Load Handling: Auto-scaling SageMaker endpoints (min 2, max 20 instances).
  • Caching Strategy: Redis LRU cache for common phrases (TTL=24h).
  • Database: PostgreSQL read-replicas for analytics; connection pooling via PgBouncer.
  • Target Metrics:
    • Translation latency: <500ms (p95)
    • API throughput: 1,000 RPM per service
    • Uptime: 99.95% (SLA)

7. Implementation Steps

  1. Phase 1: MVP Setup (4 Weeks)

    • Scaffold React Native app with Duolingo OAuth2 login.
    • Deploy PostgreSQL + Redis on AWS RDS/ElastiCache.
    • Containerize AI services (Docker) + deploy on ECS.
  2. Phase 2: AI Integration (6 Weeks)

    • Fine-tune MarianMT models for target languages (e.g., EN→JA).
    • Implement rule-based romanization/kana pipelines in Python.
    • Build caching middleware for AI outputs.
  3. Phase 3: Monetization & Monitoring (2 Weeks)

    • Integrate RevenueCat for subscription tiers (free trial → premium).
    • Set up Prometheus/Grafana for latency/error tracking.
    • Conduct load testing (Locust 2.15).

8. Future Extensions

  • Personalized Review: GPT-4 for adaptive lesson recommendations.
  • Offline AI: TensorFlow Lite models for on-device translation.
  • Multimodal Input: Whisper ASR for speech-to-text practice.

Character Count: 3,182