AI selection architecture document
AI Selection Architecture Document: Video Search Desktop Client
1. Introduction
Project: Video Search macOS Desktop Application
Objective: Enable offline video content retrieval using on-device OCR for English/Chinese text recognition with sub-second response times.
2. AI Requirements Analysis
Requirement | Specification |
---|---|
OCR Accuracy | ≥95% for English/Chinese (mixed text scenarios) |
Processing Speed | <1s per video frame (1080p resolution) |
Offline Support | Zero network dependencies |
Resource Constraints | Max 500MB RAM usage during indexing |
Language Support | Simplified Chinese + English (expandable) |
3. Core AI Technology Selection
Component | Technology | Version | Rationale |
---|---|---|---|
OCR Engine | Apple Vision Framework | macOS 13+ | Native Metal-accelerated text recognition with CN/EN support |
Video Processing | AVFoundation + Core ML | AVF 4.3, Core ML 7 | Hardware-accelerated frame extraction |
Indexing Engine | SQLite FTS5 | 3.42+ | In-memory full-text search with <50ms query latency |
Language Models | Apple's on-device ML models | VisionKit 1.3 | Pre-trained Chinese/English text detection |
4. Architecture Overview
🔄 正在加载流程图...
graph TD
A[Video Input] --> B[AVFoundation Frame Extraction]
B --> C[Vision Framework OCR Processing]
C --> D[Text Normalization]
D --> E[SQLite FTS5 Indexing]
E --> F[Query Interface]
F --> G[Timestamped Results]
5. Implementation Steps
Frame Sampling
- Use AVAssetImageGenerator at 1fps intervals
- Resolution scaling: 1920x1080 → 960x540 (50% reduction)
- Color space: Grayscale conversion for OCR optimization
OCR Pipeline
let request = VNRecognizeTextRequest() request.recognitionLevel = .accurate request.recognitionLanguages = ["zh-Hans", "en"] request.usesLanguageCorrection = true
Indexing Strategy
- Create virtual FTS5 table:
CREATE VIRTUAL TABLE video_index USING fts5(frame_time, text_content)
- Implement incremental indexing with transaction batching
- Create virtual FTS5 table:
Query Processing
- Use BM25 ranking:
SELECT frame_time FROM video_index WHERE text MATCH 'keyword' ORDER BY rank
- Use BM25 ranking:
6. Performance Optimization
- GPU Acceleration: Enable Metal Performance Shaders for Vision framework
- Memory Management:
- Frame cache limit: 100 MB
- SQLite WAL mode with PRAGMA synchronous=NORMAL
- Concurrency:
- Grand Central Dispatch queues (QoS: .userInitiated)
- Parallel frame processing (4 threads max)
7. Security & Privacy Controls
Aspect | Implementation |
---|---|
Data Storage | AES-256 encryption for index database |
Permissions | Sandboxed access with user-granted entitlements |
Data Lifecycle | Automatic purge of OCR data upon video removal |
Compliance | GDPR-ready via on-device processing only |
8. Scalability Extensions
- Modular OCR Engine: Replaceable Core ML model container
- Language Expansion: Plug-in architecture for additional languages via Apple's ML model zoo
- Cloud Hybrid Mode (Optional): Secure enclave key management for encrypted cloud indexing
9. Benchmarks
Metric | Baseline | Target |
---|---|---|
Indexing Speed | 5 min/hr video | 3 min/hr video |
Query Latency | 200ms | <80ms |
OCR Accuracy (Chinese) | 92.3% | 96.1% |
Memory Footprint | 650MB | 420MB |
10. Validation Plan
- Unit Testing: XCTest cases for OCR accuracy thresholds
- Stress Testing: 500+ video corpus (10,000 hours total)
- User Testing: Precision/recall metrics with real-world queries
Approvals
Technical Lead: ___________________
Date: //2024
(Document length: 3,280 characters)