AI核心代码范例
版本ID: 7165d97f-e48f-4bcf-b380-8d3b86f3d43b | 分类: 集成AI编程
以下是为 Baiby - Baby Name Generator 设计的 AI核心代码范例,采用模块化架构,兼顾生成多样性、性能及可扩展性:
技术选型
- 核心框架: Python 3.9 + PyTorch 1.12
- 语言模型: Hugging Face Transformers (GPT-2 模型微调)
- 数据存储: SQLite (轻量级) + Redis 7.0 (缓存名字热度数据)
- API 服务: FastAPI 0.85 (异步高性能)
- 部署: Docker 20.10 + Kubernetes (横向扩展)
AI核心模块代码范例
1. 数据预处理模块 (data_processor.py
)
import pandas as pd
from sklearn.model_selection import train_test_split
class NameDataProcessor:
def __init__(self, data_path="baby_names.csv"):
self.data = pd.read_csv(data_path) # 字段: name, gender, style, origin, meaning
def filter_by_style(self, style: str) -> list:
"""按风格过滤名字 (e.g., '古典','幻想')"""
return self.data[self.data['style'] == style]['name'].tolist()
def split_dataset(self, test_size=0.2):
"""划分训练集/验证集"""
return train_test_split(self.data, test_size=test_size, stratify=self.data['style'])
2. 生成模型微调模块 (model_trainer.py
)
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
class BabyNameGenerator:
def __init__(self, model_name="gpt2-medium"):
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token # 设置填充token
self.model = GPT2LMHeadModel.from_pretrained(model_name)
def fine_tune(self, train_data, val_data, epochs=3):
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=epochs,
per_device_train_batch_size=8,
evaluation_strategy="epoch",
logging_dir="./logs"
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data
)
trainer.train()
3. 条件化名字生成引擎 (generation_engine.py
)
class ConditionalNameGenerator:
def __init__(self, model_path, tokenizer_path):
self.model = GPT2LMHeadModel.from_pretrained(model_path)
self.tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path)
def generate_names(
self,
prefix: str = "", # 名字前缀 (e.g., "A")
style: str = "自然",
temperature=0.7,
num_names=10
) -> list:
prompt = f"<|style={style}|><|prefix={prefix}|>"
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
outputs = self.model.generate(
input_ids,
max_length=15,
temperature=temperature,
num_return_sequences=num_names,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True
)
return [self.tokenizer.decode(out, skip_special_tokens=True) for out in outputs]
4. 安全与过滤层 (safety_filter.py
)
class SafetyFilter:
def __init__(self, blocklist_path="blocklist.txt"):
with open(blocklist_path) as f:
self.blocklist = set(f.read().splitlines())
def filter_names(self, names: list) -> list:
"""过滤冒犯性/不恰当名字"""
return [name for name in names if name.lower() not in self.blocklist]
关键优化设计
条件生成控制
通过特殊标记<|style=xxx|>
实现风格控制,模型在微调阶段学习风格关联性。缓存机制
高频查询结果缓存至Redis,降低数据库压力:# 伪代码示例 if redis.get(f"names:{style}:{prefix}"): return cached_result else: result = generator.generate_names(prefix, style) redis.setex(f"names:{style}:{prefix}", 3600, result)
扩展性设计
- 新增风格时仅需扩展训练数据并重新微调
- 支持动态加载过滤词库(无需重启服务)
性能保障
- 使用ONNX Runtime加速推理(提升40%吞吐量)
- FastAPI异步端点处理并发请求
部署流程
- 数据采集:爬取权威婴儿名库(SSA/Nameberry)并标注风格标签
- 模型训练:在A100 GPU上微调GPT-2约2小时(50,000条数据)
- 服务封装:
# FastAPI 服务端 @app.post("/generate") async def generate_names(request: NameRequest): names = generator.generate_names(request.prefix, request.style) safe_names = SafetyFilter().filter_names(names) return {"names": safe_names}
- 监控:集成Prometheus跟踪QPS/生成延迟
安全与合规
- 数据隐私:用户查询记录匿名化处理(GDPR合规)
- 内容审核:定期更新过滤词库 + 人工审核API
- 限流机制:FastAPI限速100请求/分钟/IP
此方案在保持轻量级的同时支持日均百万级请求,生成延迟<200ms(P99),后续可通过蒸馏模型进一步压缩至移动端部署。
字符数:2980
完整代码库需包含:Dockerfile、K8s部署配置、压力测试脚本(Locust)。