AI core code examples
Version ID: 4e74f752-e85b-4109-9937-9b217c4deedf | Category: AI Programming
AI Core Code Examples for "Creation King: All-in-One Intelligent Creation Platform"
1. Text Generation Module (GPT-4 Integration)
Use Case: Social media content generation (Xiaohongshu, Weibo, etc.)
import openai
from config import OPENAI_API_KEY
class ContentGenerator:
def __init__(self, model="gpt-4-0613", temperature=0.7, max_tokens=1024):
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
openai.api_key = OPENAI_API_KEY
def generate_content(self, platform: str, topic: str, style: str) -> str:
prompt = f"""
Generate a {platform}-style post about '{topic}' in {style} tone.
Include:
1. Catchy headline
2. 3 key points with emojis
3. Call-to-action hashtags
"""
response = openai.ChatCompletion.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
max_tokens=self.max_tokens
)
return response.choices[0].message['content'].strip()
# Example usage
generator = ContentGenerator()
xiaohongshu_post = generator.generate_content(
platform="Xiaohongshu",
topic="Sustainable Fashion",
style="inspirational"
)
2. Multilingual Translation Engine (Hugging Face Transformers)
Use Case: Real-time translation for 20+ languages
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
class NeuralTranslator:
def __init__(self, model_name="facebook/m2m100_1.2B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
self.translator = pipeline(
"translation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1
)
def translate(self, text: str, target_lang: str) -> str:
# Set target language token (e.g., "fr" for French)
self.tokenizer.tgt_lang = target_lang
translated = self.translator(
text,
max_length=512,
num_beams=5,
early_stopping=True
)
return translated[0]['translation_text']
# Example usage
translator = NeuralTranslator()
english_to_french = translator.translate(
"Sustainable fashion reduces environmental impact",
target_lang="fr"
)
3. Code Generation Module (TreeSitter + GPT-3.5-Turbo)
Use Case: Context-aware code snippet generation
import tree_sitter
from tree_sitter_languages import get_language
class CodeAssistant:
def __init__(self):
self.parser = tree_sitter.Parser()
self.parser.set_language(get_language('python'))
def generate_code(self, task: str, context: str = "") -> str:
prompt = f"""
You are an expert programmer.
Context: {context}
Task: {task}
Output:
1. Complete code snippet
2. Brief explanation
3. Time complexity analysis
"""
# ... GPT API call similar to ContentGenerator ...
def validate_syntax(self, code: str) -> bool:
tree = self.parser.parse(bytes(code, "utf8"))
return not tree.root_node.has_error
# Example usage
assistant = CodeAssistant()
python_code = assistant.generate_code(
task="Implement quicksort in Python",
context="For educational purposes"
)
if assistant.validate_syntax(python_code):
print("Valid syntax")
4. Specialized Tool: SWOT Analysis Generator
class SWOTAnalyzer:
SWOT_TEMPLATE = """
**Company:** {company}
**Industry:** {industry}
| Category | Items |
|----------------|--------------------------------|
| **Strengths** | {strengths} |
| **Weaknesses** | {weaknesses} |
| **Opportunities**| {opportunities} |
| **Threats** | {threats} |
"""
def generate_swot(self, company: str, industry: str) -> str:
prompt = f"""
Generate comprehensive SWOT analysis for:
Company: {company}
Industry: {industry}
Output format:
- 4 strengths (bullet points)
- 4 weaknesses
- 4 opportunities
- 4 threats
"""
# ... GPT API call ...
return self._format_swot(response, company, industry)
def _format_swot(self, raw_data: str, company: str, industry: str) -> str:
# Parse GPT response into structured template
# ... implementation omitted for brevity ...
return self.SWOT_TEMPLATE.format(
company=company,
industry=industry,
strengths="• "+raw_data.split("Strengths:")[1].split("Weaknesses:")[0].strip().replace("\n", "\n• "),
# ... similar parsing for other sections ...
)
# Example usage
analyzer = SWOTAnalyzer()
swot_report = analyzer.generate_swot("Tesla", "Electric Vehicles")
5. Video Script Generator (Multi-model Ensemble)
class VideoScriptEngine:
def __init__(self):
self.content_gen = ContentGenerator(model="gpt-4")
self.translator = NeuralTranslator()
def generate_script(self, topic: str, duration: int, target_lang: str = "en"):
# Generate base script
prompt = f"""
Create {duration}-minute video script about '{topic}' with:
1. Hook introduction (0:00-0:30)
2. 3 main segments with visual cues
3. Call-to-action conclusion
"""
script = self.content_gen.generate_custom(prompt)
# Localize if needed
if target_lang != "en":
script = self.translator.translate(script, target_lang)
return self._add_timestamps(script, duration)
def _add_timestamps(self, script: str, duration: int) -> str:
# Algorithm to insert time markers
# ... implementation using regex and duration calculation ...
Key Technical Specifications
Component | Technology & Version | Rationale |
---|---|---|
Core NLP | GPT-4 (0613) / GPT-3.5-Turbo | State-of-the-art text generation |
Translation | M2M100 1.2B | 100-language support with low latency |
Code Analysis | TreeSitter 0.20.0 | Real-time syntax validation |
Caching | Redis 7.0 | Response caching for frequent queries |
Security | TLS 1.3 + OAuth2.1 | End-to-end encryption & JWT authentication |
Scalability | Kubernetes + RabbitMQ | Auto-scaling with message queueing |
Implementation Workflow
Initialization
# Load all models on startup content_engine = ContentGenerator() translation_engine = NeuralTranslator()
Request Processing
def handle_request(user_input: dict): if user_input['tool'] == "swot": return swot_analyzer.generate(user_input['company']) elif user_input['tool'] == "translate": return translation_engine.translate(user_input['text'], user_input['lang']) # ... other tool routing ...
Output Optimization
# Apply post-processing rules def sanitize_output(text: str) -> str: return (text.replace("_", "") # Remove markdown artifacts .replace("**", "") .strip())
Performance & Scalability Measures
Async Processing
import asyncio async def generate_async(prompt): return await openai.ChatCompletion.acreate(...)
Rate Limiting
from redis import Redis from ratelimit import limits, RateLimitException @limits(calls=100, period=60) # 100 RPM/user def api_handler(user_id): ...
Model Quantization
# For self-hosted models quantized_model = torch.quantization.quantize_dynamic( original_model, {torch.nn.Linear}, dtype=torch.qint8 )
Total characters: 3872