Tech Stack Document
Tech Stack Document: Xmind AI Desktop Client
1. Introduction
Project Name: Xmind AI Desktop Client
Objective: Develop a cross-platform desktop application for streamlined access to Xmind software downloads, featuring AI-enhanced mind mapping capabilities. Combines secure distribution infrastructure with local AI processing for real-time mind map generation and optimization.
2. Technology Stack
Category | Technology & Version | Rationale |
---|---|---|
Core Framework | Electron 25.3.0 | Cross-platform compatibility (Windows/macOS/Linux), native OS integration |
UI Framework | React 18.2 + TypeScript 5.1 | Component-based architecture, type safety, and responsive design |
AI Engine | TensorFlow.js 4.5.0 | Client-side ML for text-to-mind-map conversion, GPU acceleration support |
State Management | Recoil 0.7.7 | Atomic state management for complex AI workflows |
Database | SQLite 3.42.0 (Embedded) | Local storage for user preferences/download history |
Packaging | Electron Forge 7.0.0 | Automated builds, code signing, and auto-update (Squirrel/S3 backend) |
Security | WebCrypto API + Keytar 7.9.0 | Secure credential storage and encrypted communications |
Testing | Jest 29.6 + Playwright 1.38 | Unit/integration tests + cross-browser E2E validation |
3. AI Component Architecture
🔄 正在加载流程图...
graph LR
A[User Input] --> B(TensorFlow.js Model)
B --> C{AI Processing}
C -->|Text| D[NLP Entity Extraction]
C -->|Image| E[OpenCV.js Handwriting Recognition]
D --> F[Auto-Mind-Map Generation]
E --> F
F --> G[Xmind File Export]
AI Models:
- text-to-mindmap: Fine-tuned BERT transformer (Hugging Face) for keyword/relationship extraction.
- sketch-to-digital: CNN model (TensorFlow.js) trained on hand-drawn diagram datasets.
4. Implementation Steps
Phase 1: Core Application Setup
- Scaffold Electron-React App:
npx create-electron-app xmind-ai --template=typescript-webpack npm install @electron-forge/cli
- Integrate TensorFlow.js:
import * as tf from '@tensorflow/tfjs'; const model = await tf.loadGraphModel('https://cdn.xmind.ai/text-mapper/1.0/model.json');
Phase 2: AI Feature Implementation
- Text Processing Pipeline:
const runInference = (text: string) => { const embeddings = tokenizer.encode(text); const predictions = model.predict(tf.tensor([embeddings])); return extractMindMapNodes(predictions); // Outputs Xmind-compatible JSON };
- Image Processing:
Use OpenCV.js (compiled to WebAssembly) for sketch preprocessing before TensorFlow inference.
Phase 3: Security & Distribution
- Secure Download Protocol:
- Validate download URLs via SHA-256 checksum comparison against Xmind’s signed manifest.
- Implement certificate pinning using
electron-signed
.
- Auto-Update Workflow:
- Configure Electron Forge to publish signed builds to S3 with incremental updates.
Phase 4: Performance Optimization
- WebWorker Parallelization: Offload AI processing to dedicated threads.
- Model Quantization: Convert TF.js models to INT8 format (40% size reduction).
- Lazy Loading: Split TensorFlow.js and OpenCV.js into separate chunks.
5. Scalability & Extensibility
- Modular AI Add-ons:
```mermaid