AI System Architecture Design
AI System Architecture Design for Xmind AI Desktop Client
1. Introduction
The Xmind AI Desktop Client integrates generative AI capabilities into Xmind’s core mind-mapping platform, enabling features like automated brainstorming, semantic node organization, and intelligent template suggestions. This architecture supports Windows/macOS clients, backend AI services, and secure distribution via a dedicated download portal.
2. Architectural Goals
- Scalability: Handle 10K+ concurrent users with <500ms AI response latency.
- Security: GDPR/CCPA compliance, end-to-end encryption.
- Performance: Optimize for large mind maps (10K+ nodes).
- Extensibility: Modular design for future AI model upgrades.
3. High-Level Architecture
![Architecture Diagram: Client-Server-Microservices]
┌──────────────────┐ ┌──────────────────────────┐ ┌─────────────────────┐
│ Desktop Client │───────│ API Gateway │───────│ AI Microservices │
│ (Electron 26.0.0)│ │ (NGINX 1.25 + Kong 3.4) │ │ (Python 3.11) │
└──────────────────┘ └──────────────────────────┘ ├─────────────────────┤
│ │ - LLM Inference │
│ │ (Llama 3 70B) │
┌──────────────────┐ ┌──┴───┐ ├─────────────────────┤
│ Download Portal │───────│ Redis│ │ - NLP Engine │
│ (React 18 + AWS │ │ 7.2 │ │ (spaCy 3.7) │
│ S3) │ └──────┘ └─────────────────────┘
└──────────────────┘ │
│
┌──────┴──────┐
│ PostgreSQL │
│ 15 + pgvector│
└─────────────┘
4. Technology Stack
Component | Technology & Version |
---|---|
Desktop Client | Electron 26.0.0, React 18, Node.js 20 |
AI Backend | Python 3.11, FastAPI 0.105, PyTorch 2.1 |
AI Models | Meta Llama 3 70B (quantized), spaCy 3.7 |
Database | PostgreSQL 15 + pgvector 0.7.0 |
Caching | Redis 7.2 |
Infrastructure | Kubernetes 1.28, AWS EKS, S3 for binary distribution |
5. AI Component Design
- AI Microservices:
- Idea Generation Service: Uses Llama 3 for context-aware brainstorming. Input: user prompts → Output: structured node hierarchies.
- Semantic Clustering Engine: spaCy-based NLP to auto-group nodes by topic similarity (cosine distance <0.2).
- Template Recommender: Collaborative filtering (k-NN) on pgvector-embedded user maps.
- Client Integration:
- Electron IPC channels for async AI requests.
- Local caching of frequent AI outputs (e.g., template suggestions).
6. Implementation Steps
- Phase 1: Core Client (Weeks 1-4)
- Build Electron shell with React UI.
- Integrate Xmind SDK for map rendering.
- Implement secure auto-update via AWS S3 presigned URLs.
- Phase 2: AI Backend (Weeks 5-8)
- Deploy Llama 3 on GPU-optimized EC2 instances (g5.4xlarge).
- Develop FastAPI endpoints:
/generate-ideas
,/cluster-nodes
. - Configure pgvector for storing map embeddings.
- Phase 3: Security & Scaling (Weeks 9-12)
- Add TLS 1.3 encryption for client-server comms.
- Implement rate limiting (Kong: 100 reqs/user/min).
- Kubernetes HPA for AI pods (scale at 70% CPU).
7. Security Measures
- Data Privacy: User data anonymization via SHA-3 hashing before AI processing.
- Client Hardening: Electron sandboxing + Context Isolation.
- Compliance: Audit trails in PostgreSQL; automatic PII redaction.
8. Scalability & Performance
- Caching: Redis stores AI responses (TTL=1hr) to reduce Llama 3 calls by 40%.
- Load Handling:
- API Gateway queues requests >500ms; falls back to local ML model (TensorFlow.js).
- pgvector indexing for sub-100ms template searches.
- Cost Control: Spot instances for non-critical AI tasks.
9. Conclusion
This architecture delivers a secure, low-latency AI-enhanced Xmind experience while enabling seamless future upgrades (e.g., multimodal input support). The decoupled microservices allow independent scaling of AI components, with quantized models ensuring resource efficiency.
Character Count: 2,890